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Final Technical Report: AASERT 97
Constrained Control Allocation Methods
for Reconfigurable Flight Control Laws

AFOSR F49620-97-1-0405

Marc Bodson
Department of Electrical Engineering
University of Utah

Objectives

The surfaces that control aircraft trajectories have a limited range and rate of motion. The
limits can lead to a significant degradation of performance if not accounted for in the
design process. Instability may even occur. The objective of the project was to develop
and analyze methods for control in the presence of actuator saturation. Algorithms were
investigated for control allocation, that is, for the problem of distributing control
requirements among multiple actuators when redundancy is available. Of particular
interest were methods that exploited all of the available control power and that were
implementable in real-time. Such objectives are important for flight control systems that
are designed to reconfigure automatically after failures and damages, because of the loss
of control authority. Testing of the algorithms was performed using simulation models of
a military transport aircraft and of a tailless aircraft.

Summary of the Results

A new control allocation method was developed, based on the direct allocation method of
Durham. The direct allocation method was chosen because it utilized all of the attainable
moment set. The focus of the investigations was on developing techniques that would
speed-up the real-time computations. A special representation of the moment set in
spherical coordinates was considered and two rapid search methods were developed and
successfully implemented. The direct allocation method was also extended to a class of
systems that had previously been excluded, namely systems for which subsets of three
actuator commands produce linearly dependent moments .

Two US graduate students (one Ph.D. and one M.S.) were supported by the project. Two
undergraduate students were also supervised on a B.S. project, and started graduate study
afterwards. The research was performed in conjunction with the AFOSR awards: “Robust
adaptive algorithms for reconfigurable flight control” (Grant: F49620-95-1-0341, the
original parent grant) and “Self-designing control systems for piloted and uninhabited
aerial vehicles” (Grant: F49620-98-1-0013).
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Accomplishments

Control Allocation

Control allocation is the problem of distributing control requirements among redundant
control surfaces. The problem is particularly important for tailless aircrafts (because
current designs involve a large number of control surfaces) and for reconfigurable control
laws (because control surfaces need to be commanded separately for the maximum
capabilities of the aircraft to be exploited). The following state-space model was
considered

x=Ax+Bu+d
y=Cx

where x € R", d € R", u € R™, y € RP. For the control of aircrafts, the states given by the

vector x may include the angle of attack, the pitch rate, the angle of sideslip, the roll rate,

and the yaw rate (n=5). The output vector y may contain the pitch rate, the roll rate, and

the yaw rate (p=3). The control input vector u consists in the control surface deflections,

or in the commanded actuator positions if the actuator dynamics can be neglected. If the

control variables are ganged, m may be as small as 3. Otherwise, the typical range is
m=5 — 20.

Model reference control laws, sometimes referred to as dynamic inversion control laws,
rely on a reference model which represents the desired dynamics of the closed-loop
system, for example '

Yu =AYy +Byty
where r, is a reference input vector, and y,, represents the desired output of the system.
Since the derivative of y is given by

y=CAx+ CBu+Cd

the objective may be achieved by setting
u=(CB)" (~CAx—Cd + Ay y+Byry)

Model matching follows if the matrix CB is square and invertible, and if the original
system is minimum phase. Adaptive implementations of this control law were discussed
in the context of reconfigurable flight control in [1].

If the matrix CB is not full rank, model matching may still be possible, but with a
different model and a more complex control law. On the other hand, if CB is not square
but full row rank (more columns than rows, as in the case of redundant actuators), the
same model reference control law can be used if one defines

and if the control input u is such that



(CBu=a,

Obtaining u requires that one solve a system of linear equations with more unknowns
than equations. This may seem like an easy problem, but the difficulty in practice is that
the vector u is constrained. The limits generally have the form

Upin; SU; Su for i=1,...m

min,i max,i

oI, Uy, Susug, , in vector form. Given these limits, an exact solution may not exist,
despite the redundancy.

The control allocation problem generally consists in finding the control input u that best
fits the desired relationship, while satisfying the constraints. Towards that objective, the
direct allocation method of Durham (“Constrained Control Allocation,” Journal of
Guidance, Control, and Dynamics, vol. 16, no. 4, 1993, pp. 717-725) defines the
following problem: given a desired vector my, find the vector u such that CBu is closest to
mg in magnitude, with u satisfying the constraints and CBu proportional to my. In the
Durham's formulation, the vector m, was a desired moment.

At the core of Durham's method is the computation of the set of attainable moments (or
set of attainable accelerations here, a minor adjustment). Fig. 1 shows the sets of
attainable accelerations for a C-17 transport aircraft model (on the left) and for a tailless
fighter aircraft model (on the right). The axes of the plots are the pitch, roll, and yaw
accelerations in deg/s’. The boundaries of the sets specify the maximum accelerations
obtainable under the control limits, assuming linear models for the aircraft dynamics.
What makes the control allocation problem difficult is the large number of actuators: 11
for the tailless aircraft and 16 for the C-17 aircraft. A computer code was developed that
produces the sets shown on Fig. 1 in a fraction of a second.

Yaw Accel.
Yaw Accel.

100 50 e 400
Pitch accel. -100 Roll accel. Pitch accel. 800

-500

Roll accel.

Fig. 1: Sets of attainable accelerations,
C-17 aircraft (left) and tailless aircraft (right)

The set for the tailless aircraft is delimited by 78 facets, while the set for the C-17 is
determined by 240 facets. The method developed by Durham and co-workers requires



that, if one extracts any three columns of the CB matrix, the resulting matrix is
nonsingular. This condition is satisfied for the C-17 model used for Fig. 1 (on the left)
and implies that every facet is a parallelogram. For the tailless model, the condition is not
satisfied. In fact, some columns of the matrix are even linearly dependent (because pitch
thrust vectoring and pitch flaps only produce pitching accelerations). To obtain the plot
shown on the right of Fig. 2, the original method was extended to relax the linear
independence requirement. Note two polygonal facets visible on the plot.

The most significant part of the computations in Durham’s method is performed to obtain
the set of attainable accelerations. To compute the control signals after the set is obtained,
one must determine the facet towards which the desired acceleration points, and then
perform some simple computations. Since the determination of the set may be performed
off-line, the method becomes a fast algorithm for control allocation guaranteeing the use
of the maximum control authority, if the applicable facet can be found rapidly.

The use of spherical coordinates was investigated as a way to perform the search. The
results of this study are reported in [2], [3], and [4]. On Fig. 2 is a representation of the
two sets of Fig. 1 in spherical coordinates. Note that, because the determination of the
applicable facet is only dependent on the direction of the desired acceleration, the search
problem is effectively a 2-dimensional problem.

0.67
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0.57 0.2}
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o
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-0.4}
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Azimuth Azimuth

Fig. 2: Sets of attainable accelerations expressed in spherical coordinates,
C-17 aircraft (left) and tailless aircraft (right)

Two methods were developed using the idea of spherical coordinates. In the first method,
ranges were pre-computed for the coordinates of the facets, defining boxes that contained
the facets. The search was similar to an exhaustive search of the facets, except that simple
inequality tests were used to quickly eliminate facets from the search. For those facets
that satisfied the box check, a more complicated test was performed. This test



conclusively established whether the facet was the correct one. If the test was successful,
the control input was rapidly obtained. The idea was that the more complicated test was
only required for very few facets. In experiments with the C-17 model, the test was
required once in 50% of the cases and less than three times in 95% of the cases. Overall,
it was required an average of 1.97 times, as opposed to 49.7 times in the case of an
exhaustive search.

A second method was also developed using the concept of spherical coordinates. In that
method, a table of facets was created off-line, and the table was indexed by spherical
coordinates. The determination of the applicable facet was then achieved by simple table
look-up. This option required virtually no on-line computations and provided a
guaranteed solution in a fixed time. Its drawback was a potentially large memory
requirement and longer off-line execution times.

On-line Computations

7300 ave 1
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Fig. 3: Comparison of the on-line computations required
by the different methods (C-17 aircraft)

Fig. 3 gives a comparison of the on-line computations required by the two methods,
together with a baseline provided by a sequential search of the facets. The table entries
for the sequential search and facet box methods have a range and an average value. The
range denotes the minimum to maximum (worst-case) possible values for the method,
whereas the average was computed for 1000 randomly selected moments. As mentioned
earlier, the facet box approach considerably reduces the computations required, as
compared to a sequential search. The table look-up approach goes even further and
virtually eliminates the computations to be performed on-line, as well as the variability in
the number of those computations. Memory requirements are significant, however.

Similar techniques were applied to systems which did not satisfy the linear independence
assumption. As shown in Fig. 1, Durham's condition was relaxed for the determination of



the attainable acceleration set by replacing the parallelogram facets by polygons. To
perform control allocation, two options were considered. The first option used
representations of the polygonal facets in spherical coordinates. It turned out to be
difficult to implement and was not further pursued. A second option was explored that
consisted in representing the polygonal facets as superimposed parallelogram facets. This
option had the advantage of sharing many features with the original method. Given a
desired acceleration, the table look-up method produced several sub-facets, eacn of them
yielding a valid control input (the solution may not be unique if the linear independence
assumption is not satisfied). In order to insure the continuity of the solution, the solution
that was picked was the average of the solutions corresponding to each sub-facet.

Fig. 4 shows a block diagram representation of the table look-up implementation of
Durham's method, as proposed in [2], [3], and [4]. The resulting algorithm has the
advantage of being feasible in real-time and to guarantee usage of the maximum control
authority. Its reliability is also excellent, as the computations are very simple and their
results predictable. The main drawback of the method is that it requires a substantial
memory space. Some computations must be performed off-line for the creation of the
look-up tables and, in a reconfigurable control law, they must be performed on-line.
However, they may be carried out at a lower computational rate, that is, the rate
associated with the variation of the adaptive parameters. ’

Azimuth

Pitch—> Spherical | ™ Facet | Facet Control | Control LU ;
Roll =¥ .4 |Elevation | table [rqoirn® ontrol i ——p, LOoNrol  —p
Yaw — i —. . | identifier | table at max. | scaling
acceleration
commands Magnitude

Fig. 4: Block diagram of the table look-up algorithm
for direct allocation using spherical coordinates

Flight Testing with Remote-Controlled Aircraft

A small flight testing platform was developed using commercial R/C aircraft hardware.
The objective of this effort was primarily educational, and a tool to attract students to the
field of intelligent aircraft systems. Two undergraduate students completed senior
projects on this topic. The nose cone developed by the students is visible on the photo of
the aircraft on Fig. 5, and provides air pressure, angle of attack and angle of sideslip
measurements. As opposed to other similar projects, the airframe is based on a
commercial almost-ready-to-fly (ARF) R/C aircraft and low-cost instrumentation (no
GPS or sophisticated on-board computer), with the objective of performing experiments
which would not be considered feasible with conventional flight testing platforms.



Fig. 5: Remote-controlled aircraft developed for flight control experiments

Personnel Supported

Graduate Students: Mark Leatherwood and John Petersen, both US citizens, were
supported by the grant. David Shore and Dan Stevens, also both US citizens, completed
their B.S. project under the PI's supervision. They did not receive any salary, but some
funds were provided for the development of their experiments.

Interactions/Transitions

John Petersen presented a paper at the AIAA Guidance, Navigation, and Control
Conference (Portland, OR, August 9-11, 1999), describing the results of his work.
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Progress of the Students Associated with this Project

John Petersen and Mark Leatherwood made excellent progress towards their graduate
degree with the support of the grant. John Petersen passed his Ph.D. qualifying
examination and is expected to defend his proposal for Ph.D. dissertation in August 2000.
Mark Leatherwood defended his M.S. thesis proposal in May 2000, and is expected to
complete his thesis in August 2000. Dan Stevens was admitted for graduate study at U.C.
Berkeley and moved there after the completion of his B.S. at the University of Utah.
David Shore joined the graduate program of the Department of Mechanical Engineering
at the University of Utah, and will pursue an M.S. degree under the supervision of the PI
of this grant. For his thesis, he will continue the work of his B.S. project and implement
real-time identification algorithms for air vehicles on a remotely-piloted aircraft.
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Command Limiting in Reconfigurable Flight Control

Marc Bodson* and William A. Pohlchuck’
University of Utah, Salt Lake City, Utah 84112

Limits on the motion and on the rate of motion of the actuators driving the control surfaces of aircraft significantly
affect the performance of flight control systems. After a failure or damage to the aircraft, the constraints become
even more restrictive because of the loss of control power. There is also often an increase in cross couplings
between the axes and, for a period of time, a significant uncertainty about the moments generated by the individual
control surfaces. A model reference adaptive control algorithm is considered for flight control reconfiguration.
The tracking performance of the algorithm deteriorates drastically for large maneuvers if actuator saturation is
not accounted for. Four methods of command limiting are proposed to handle the problem, which are based on
a scaling of the control inputs, a relaxation of the control requirements, a scaling of the reference inputs, and a
least-squares approximation of the commanded accelerations. Simulations demonstrate the effectiveness of the
algorithms in the reconfigurable flight control application. Even the simplest method is found to considerably
improve the responses, and, surprisingly, the performance of all four methods is similar despite their widely
different concepts and complexity levels. In some cases, degraded transient responses are observed, which are

attributed to the uncertainty in the aircraft parameters following a failure.

Introduction

A CTUATOR limits pose a major problem in flight control sys-
tem design. The positions of contro} surfaces are limited both
in their range and in their rate of motion. If not accounted for in the
design, in flight these constraints may lead to a significant degra-
dation of performance and, sometimes, pilot-induced oscillations.
The origin of these problems is in the delay of the response of the
aircraft resulting from actuator saturation, as well as in the multi-
variable nature of the control problem, which is such that saturation
in one axis may lead to poor responses in other axes. Command lim-
iting is the problem of modifying the actuator commands so that the
control objectives are achieved in the best possible manner despite
the control constraints. A more general problem is that of control al-
location, which includes the requirement of distributing the control
activity among multiple actuators, if redundancy is available.

For reconfigurable flight control systems, actuator saturation be-
comes even more problematic. The reason is that not only is control
power reduced, but also that couplings between longitudinal and
lateral axes are significantly larger after many failures. In addition,
command limiting has to be performed in the presence of consid-
erable uncertainty regarding the moments generated by the control
inputs. Although the same techniques may be applied for reconfig-
urable control systems as for nonadaptive systems, certain differ-
ences are expected to arise. This paper focuses on those problems
and on the design of command-limiting methods in conjunction with
control reconfiguration.

Two main approaches may be distinguished for the design of
control laws under constraints. The first consists in taking the con-
straints into account in the design of the control law. For example,
a constrained-optimization procedure may be applied to calculate
the values of the control inputs needed to optimize some cost cri-
terion subject to the constraints. This approach is the most elegant,
but requires a considerable amount of computations and is difficult
to implement in real time for a multivariable system. A second ap-
proach consists in designing the control laws without accounting
for the control limits and devising a separate procedure to modify

Presented as Paper 97-3604 at the AIAA Guidance, Navigation, and Con-
trol Conference, New Orleans, LA, Aug. 11-13, 1997; received Aug. 24,
1997; revision received Feb. 19, 1998; accepted for publication Feb. 25,
1998. This paper is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.
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*Graduate Student, Department of Electrical Engineering; currently Se-
nior Engineer, International Space Station Program, The Boeing Company,
Houston, TX.

639

the control signals when the constraints are not satisfied. For exam-
ple, admissible control inputs may be calculated to approximate the
desired control inputs in some optimal sense within the constraints.
Or the control objectives may be relaxed until the constraints are
satisfied. The second approach has the advantages that the nominal
control system design is separate from the treatment of control sat-
uration and that the resulting algorithm is of a complexity amenable
to real-time implementation.

Previous work includes the concept'~* of finding an allowable
control input such that the generated moment in the direction of
the desired moment is closest to the desired value. Another idea*
is to find an approximation of the acceleration that is the closest to
the desired value in a least-squares sense. In that case, the direc-
tion of the desired value does not take a particular role. Yet another
approach’® is to modify the reference input so that the approximate
reference input applied to the control law does not yield saturation.

. In this paper, we study four methods of command limiting called

scaling of control inputs, relaxation of control requirements, scaling
of reference inputs, and least-squares approximation of commanded
accelerations. Although the concepts have their roots in earlier pa-
pers, a novelty of this paper is the comparison of the methods and
their evaluation in the context of reconfigurable flight control sys-
tems. The respective advantages of the methods are discussed in
terms of computations, ease of implementation, and performance in
simulations using a detailed fighter aircraft model.

Problem Statement
Aircraft Model
Consider the linearized aircraft model

x=Ax+Bu+d, m
wherex € RS, u € R%, d € R% andy € R3. The states of the
aircraft are given by x and include angle of attack «, pitch rate
q, sideslip 8, roll rate p, and yaw rate r. The control inputs are
given by u and include elevator command 8, aileron command &4,
and rudder command 8. The vector d is equal to —Ax* — B u",
where x* and u* are the trim state and trim input, respectively. In
this formulation, the trim terms are grouped together as a constant
disturbance applied to the system. It is assumed that the whole state
x is available for measurement, although only the output y is to be
tracked. The output y includes g, p, and r, a choice that is adequate
for low dynamic pressure and limited angle of attack.* -
Note that in the design of a reconfigurable flight control system,
it may be advantageous to separate the control inputs associated to
each of the elevators (or stabilators) and to each of the ailerons.
Such choice gives more flexibility, in particular to generate roiling

y=Cx
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moments from the elevators. This approach, however, significantly
increases the number of parameters that must be identified online.
Commands to the individual control surfaces must also be linearly
independent functions of time to guarantee identifiability, a condi-
tion that may be difficult to guarantee. For simplicity, it is assumed
that elevators and ailerons are paired together, so that the number of
inputs and outputs are equal.

Model Reference Control Law

To evaluate the performance of the command-limiting methods, a
specific but relatively simple multivariable control law is considered.
The control objective is the tracking of a reference model. The output
y is expected to match the output y» of

yu = —kym +kry 2

where yy € R andry € R3 and k > 0 is a design parameter.
The same parameter & is used for the three variables and, for the
simulations, the constant k was set to 2.5 rad/s (Ref. 4). This is
not a restriction of the algorithm, and different dynamics may be
chosen for the three axes, if desired. The vector ry is the reference
input and represents pilot commands of pitch rate, roll rate, and
yaw rate, respectively. For a solution to exist, it is assumed that
det(CB) # 0 and that the plant transfer function is minimum phase.
These assumptions were analyzed earlier® and were found to be
acceptable for the problem under consideration.
The state feedback control law

u=Cory + Gox+v 3

is used, where Cy € R3*3, Gy € R**%, and v € R® are controller
parameters. The closed-loop response, in terms of the output y,
satisfies

y = CAx + CBu + Cd = (CA + CBGy)x + CBCyry

+CBv + Cd 4)

and leads to the same input/output relationship as that of the ref-
erence model (2) for the so-called nominal values of the controller
parameters:

C; = k(CB)™', G; = (CB)"'(—CA - kC)

v = —(CB)~ (Cd") &)

For control reconfiguration, the problem is to design an adaptive
algorithm that estimates the controller parameters (5).

Adaptation Algorithm

Equation (4) can be viewed as a linear equation relating unknown
parameters CB, CA, and Cd, to known signals y, x,and . A recursive
least-squares algorithm with a forgetting factor was judged appro-
priate for the estimation, and a stabilized version of the algorithm’-3
was chosen because it provided a stabilized covariance matrix up-
date and a variable forgetting property, such that convergence was
faster when more information was available. These properties are
particularly useful for flight control reconfiguration.

The equations for the algorithm are as follows. Define C,, Gy,
and v, to be the estimates of CB, CA, and Cd. Next, create the 9 x 3
matrix of parameter estimates

6=(C; G, w)f (6
and the 9 x 1 regressor vector
wi=@ x7 DT 0))
For the true parameter 8%, one has thaty = 0*T w. The equations for
the adaptive algorithm are
Pl =AP ' [n = 11 +whrw [n]l+a(1 -0 (&)
with the initial condition P~![0] = oI, and

B[n) =6{n— 1]+ Plnlwin]lGT[n] - wl [n]0[n ~ 1)

+ aAP[n)(@n — 1] —6{n —2D) )

Two constants of the algorithm must be chosen so that 0 < A < 1
ande > 0. The implementation of the algorithm requires the knowi-
edge of y, which may be obtained from accelerometer measurements
or through filtered differentiation of rotational rate measurements.
To avoid the computation of the inverse of the matrix P, an approx-
imation of the algorithm was used.® Further, it was found useful
to normalize the signals, so that both y and w were divided by
/(1 + cwTw) before being applied to the algorithm, with ¢ > 0 a
design parameter.

Given C;, G;, and v,, the estimates of CB, CA, and Cd. a certainty
equivalence control law calculates the controller parameters:

C,=kC;'. Gy=C;'(=G,—kC), v =-Ci'm
(10

In theory, a problem presents itself if C; is singular or close to
singularity. Such a case did not arise in the simulations performed,
but could be handled by freezing the controller parameter matrix Cy
over periods of time where any element of C; ! exceeds a specified
bound. Previous experience with the control algorithm was reported
in related references.®?

Command Limiting Methods
Control Constraints

The control input u is assumed to be constrained so that u must
belong to an admissible position control set U, where U, = {u| for
i=1....,3,Pimn < Wi < Pi.mx}. The rate of variation of u is also
constrained sothat |&; | < dimnfori=1,..., 3. According to the
simulation model used, the rate limits are assumed to be symmetric.
However, this assumption may be easily removed.

Because the application to digital flight control is considered,
the constraint on the rate of variation can then be translated into a
position constraint. Given a control input u(n — 1) at the previous
time sample and a sampling period T, the admissible control rate
setisdefinedtobeUd,, where U, = {u| fori = 1,...,3,u;(n— 1)~
Tdimax < u;i(n) < uj(n — 1) + Td;max}. Both the position and
the rate limits can be translated into a single admissible control set,
U = U, N U, with U of the form () fori =1,....3, Uimin <
Ui < Ujmul}-

Method 1: Scaling of Control Inputs

The first method is the simplest. The desired control input is
denoted u, and the control input produced by the command limiting
method is denoted u. The idea behind the method is that when uy
does not belong to the admissible control set, its components are
scaled until the constraints are satisfied. The objective is to preserve
the directionality of the commands while satisfying the constraints.
Specifically, algorithm 1 is defined as follows.

1) Let p, be the largest number such that 0 < p
puy(n) € Uy,

2) Let p, be the largest number such that 0 < p; < landus(n) =
u(n — 1) + pa(pug(n) —u(n — 1)) € Y,. Let u(n) = uz(n).

The first step consists in scaling the control inputs to satisfy the
position constraints. The second step consists in scaling the variation
of the control inputs to satisfy the rate constraints. It was found useful
to perform scaling for the position limits first, to give priority to the
directionality of the commands.

< landu,(n) =

Method 2: Relaxation of Control Requirements

The second method consists in relaxing the control requirements
when the constraints are violated. In the context of the model ref-
erence control algorithm discussed here, the control requirements
are primarily embedded in the constant k. For large values of k, the
closed-loop poles are located far in the left-half plane, yielding tight
and fast control. Conversely, in the presence of actuator saturation,
a way to relax the control requirements is to reduce the value of the
constant k. Because the control law has the form

u; = u, +uy, u, = (CB) 'k(ru = y)

(11)
u, = (CB)~'(—CAx — Cd)

the method consists in finding the largest p such that0 < p < 1and
pu, +uy, € U.Withthisobservation in mind, the method is foundto
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require a scaling similar to that performed in algorithm 1. However,
it is somewhat more difficult to code because of the additional term
u;,. In algorithm 2, which follows, u,,; refers to the first component
of the vector u,.

1) Find the range R, = [F| min, F1.max] SUch that uy pin < pug +
)1 < By max fr all 0 € [F1.min, F1.max]. This range can be obtained
by considering nine cases:

a) Ifup) < Uy min and 2, + Up1 > U1 max, €L

U\, min = Up,1 U} max = Wh.1
pl.min = ' p],max = ’ (12)
Uy 1 Ug

and 7y min = Py min» AN FLmax = P1max-

b)Ifuy; < Uy min a0d By min < Ua,) +Up1 < Bimax, 1P max =1
and 7y min = Py min» Where py m, is defined in Eq. (12).

¢) If w1 < Uymin and U, + s < Upmin, then Ry = O, the
empty set.

Ity min < 851 < Ui max a0 Uaj + 81 = Ui max, 1607 min = 0
and 7y max = Py max> WHEre Py may is defined in Eq. (12).

e) If uy min < Up1 < Ui max ANA Uy min < Uyt + Up1 < Uy max, let
Fimin=0andr mx = 1.

) If ) min < Up,1 < Utmax a0 Uy i + Up1 < U1 min, [LF L min = 0
and i mux = Py min» Where py pi, is defined in Eq. (12).

g) If Up) 2 U max and Uy, +Up,1 Z Wi max then Ry = Qv the
empty set.

h)Ifuy . = U1 max ANA Uy min < Ug,y +Up1 S Upmaxs €U max =1
and 7 min = P max> Where py ny is defined in Eq. (12).

i) If up, > 4y max and ) +Up,1 < Ui,min, let 7y min = Pt max and
Pimax = Py min» Where py o and p) ., are defined in Eq. (12).

2) Repeat step | with appropriate index changes to determine the
ranges R; and Rj. :

3) Find R = R, N R, N R;. If R is not empty, let p be the largest
number in R and u = pu, +u,,. If R is empty, let # be such that, for
i=1..., 3,8 = Ujmin 1T Ua; < Wi mins Wi = Wi max ifUg; > Ui max,
and u; = uy; otherwise.

The tests are based on the values of uy, | and u,; + 5,1, which
are the values of pu, | + u;,, for p = 0 and p = 1. The variables
P1.min a0 Py oy are the values of p such that pu, ; +u,,; are equal
10 1y min and 2y max, respectively. These values of p may be outside
the range [0, 1], but are only calculated if inside the interval. The
specific implementation is chosen to avoid a possible division by
zero in Eq. (12).

One difficulty with the concept is that it is possible for no g to
exist. In such a case, a simple saturation function is applied (in
step 3). This case was found to occur occasionally in simulations,
although not frequently.

The method can be applied to control laws other than the model
reference control law. For a linear quadratic control law, a similar
method can be implemented by raising the penaity on the control
deviations when the control constraints are violated. For the model
reference control 1aw, however, determination of the maximum con-
stant p is relatively easy.

Method 3: Scaling of Reference Inputs

The third approach is similar to the first procedure, in that an input
signal is scaled. However, the reference input r,, is scaled instead of
the control input . It makes sense to scale the pilot inputs instead
of the control inputs for the directionality of the pilot commands to
be preserved. Computationally, the method is close to the second
method because one may write the control input as

u; =u,+u,

(13)
u, = (CB) ‘kry, u, = (CB)"!(—CAx - Cd ~ ky)
and the same procedure can be applied as in algorithm 2 to find a
p such that pu, + u;, € U. One difficulty, however, is that it is far
easier to encounter a case where no p exists. A particular situation
where this occurs is when the reference input moves from a large
value to a zero value, so that the scaling of the reference input
is ineffective in avoiding saturation. To resolve the problem, the
concept may be modified so that a linear combination of the previous
reference input and the current reference input is used. Instead of

replacing ry by pry, the procedure replaces ru (n) by pru(n) +
(1 = p)ry(n — 1). For p = 1, the modified reférence input is equal
to the reference input. For p = 0, the modified reference input is
equal to the previous reference input. Interestingly, the same portion
of algorithm 2 can again be applied, but with different definitions
of u, and u,. Specifically, note that u; = u, + p, With

u, = (CB)~‘kry(n) — (CB) 'kryy(n — 1)
(14)

u, = (CB)~'(—=CAx — Cd — ky) + (CB) 'kry(n = 1)

Algorithm 3, which results, is described next.

1) Findthe largest p suchthat0 < p < land pu, +u; € U, using
the method of algorithm 2, but with u, and u;, defined in Eq. (13). .
If a p is found, let u = pu, + u, and stop; otherwise proceed.

2) Find the largest p such that 0 < p < 1 and pu, +u, € U,
using the method of algorithm 2, but with u, and u,, defined in
Eq. (14). If a p is found, let u = pu, + u,, and replace ry(n) by
pry(n) + (1 = p)ry(n — 1). If no p can be found, let u be such
that, fori =1,. ..,3, U; = U; min if Uy; < Uimin, Ui = UWimax if
Ug; > UWimu, and u; = uy; otherwise.

If the states and the parameters vary by a small amount over a
sampling interval, the method will produce a value of p such that the
control signal is admissible. Otherwise, it is possible that no o could
be found, and the procedure again reverts to a saturation function in
such a case.

Method 4: Least-Squares Approximation
of Commanded Accelerations

This method consists in approximating the accelerations that
would be produced by the desired control inputs. Recail that y con-
tains the pitch, roll, and yaw rates. Therefore, the equation

y = CAx + CBu + CBd (15)

shows that the acceleration produced by a control input u, is CBu,.
The acceleration is the control moment divided by the inertia (in
a matrix sense), so that the concept is not very different from the
approximation of the control moments. The fourth method consists
in finding an admissible control # such that the acceleration CBu
optimally approximates the desired acceleration CBu, (Ref. 4). The
optimization criterion is a least-squares criterion, so that the objec-
tive is to find u € U, such that

e(u, uy) = ||CBu — CBuy,|* (16)

is minimized. In the absence of constraints, the solution is obtained
by setting

9
— |CBu — CBuy|* =0 an
du
which yields
3
;—u (CBu — CBu,)" (CBu — CBuy)
{

= 2(CB)"(CBu — CBu,) =0 (18)

In the case of an invertible CB matrix, this equation gives u = uy.
With constraints, the solution can be obtained in a similar way. The
idea behind the algorithm is to consider all of the possible cases,
which are such that either zero, one, two, or three constraints are
active.

Algorithm 4 is next.

1) Ifu; € U, let u = u,; and stop; otherwise proceed.

2) For #; = Uy, min, find u such that e(u, u,) is minimized without
constraints on ¥, and 3. To that effect, define u; 3 to be the vector
composed of the second and third elements of u, (CB), to be the
vector composed of the first column of CB, and (CB) 3 to be the
3 x 2 matrix ccmposed of the second and third column of CB. Then,
let the optimum u be given by u; r;,, and

wp3 = [(CB5(CBY5) ™ (CBYL, - [(CBYU, ~ (CB) it min]  (19)
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Determine the value of e(u, u,).

3) Repeat step 2 with the appropriate change of indices to deter-
mine the optimal u’s constrained to #, = U} max and similarly for
Uy = U3z mins U2 = U2 max, Y3 = U3 min, and u; = U3 max- Determine
the value of e(u, u,) in every case.

4) For Uy = Uy min and Uy = Uy min, find u such that e(u, u,) is
minimized without constraints on us, that is,

uy = [(CB)](CB)s]” (CB)] - [(CBY, — (CB):t1.min

— (CB),u2 min] (20)

Determine the value of e(u, u,).

5) Repeat step 4 with the appropriate change of indices to deter-
mine the optimal u’s constrained to #; = U} min and 4y = Uy max and
similarly for every pair among &1 = %1 min, #1 = B1.max, ¥2 = U2.mins
Uy = U max» U3 = U3 min, ANA U3 = U3 max. Determine the value of
e(u, uy) in every case.

6) Determine the value of e(u, uy) for 4y = @1 min, Y2 = U2.min
and u3 = U3 mix and similarly for every triplet among #; = 41 min,
Uy = U\ max, U2 = U2 mins Y2 = U2 max, ¥3 = U3 min, and 43 = U3 max.

7) Collect all of the candidate u's, eliminate those that do not
belong to U, and select the one that yields the smallest e(u, uy).

The computation of u 3 is based on

(CB)u — (CB)uy = (CB) 323 + (CB) 1ty min — (CBUs  21)

and using a similar derivation as in Eq. (18). Alternatively, the
method of Lagrange multipliers can be used to find another form of
the solution. Specifically, a constraint

eTu = uy min (22)

is imposed, where e, is a vector that is zero, except for the first
component, which is 1. Extending Eq. (18), the following equation
is obtained:

u = [(CB)T (CB)I"'[(CB) (CByu; — (\/er] ~ (23)

where A is a Lagrange multiplier. Using Eq. (22), the following
result is obtained:

__€lus = Uimin
e] (CB)~'[(CB)~']"ey

u=uy A(CB'(CB) 'TTer  (24)

This equation is an alternative to Eq. (19). Normally, this equation
would not be advantageous, because it requires the inverse of the
3 x 3 matrix CB, instead of the 2 x 2 matrix (CB)] ;(CB)z.3. How-
ever, assuming that (CB)~! is calculated for the determination of
u,, no new inverse is needed, and this alternative is useful. For u;, a
similar procedure can be used, but it is not advantageous because u;
only requires the inverse of a scalar in Eq. (20), and the expression
equivalent to Eq. (24) in that case is more complicated. Some steps
can also be eliminated. Specifically, step 4 is not necessary if, in
step 2, an admissible u was obtained. Similar cases can be bypassed
in steps S and 6, depending on results obtained in preceding steps.

Comparison of the Methods and Alternatives

The first method is the easiest to implement. Its computation does
not depend on the estimates of the plant matrices, so that the result
is not affected by errors in the estimation procedure. The second
and third methods are trickier to code, but the computations are
still simple. The concepts that they implement are more appealing,
but a disadvantage is that there may be cases where no solution
exists. The problem can be resolved by using a least-squares ap-
proximation, such as in method 4. The algorithm, however, is more
computationally demanding. Methods 2-4 exploit the knowledge
of the plant parameters and, therefore, of the generated moments.
This knowledge would be expected to improve performance if the
estimates of the plant parameters are good, but not in the transjent
following a failure.

The methods highlight different possibilities for the choice of
a command-limiting method. The relaxation of the control require-
ments is the closest to a control law design that formally accounts for
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Fig.1 Responsestoasmall pitch rate command: no command limiting.

actuator saturation. In general, this concept leads to a low-gain/high-
gain control law, and instead of the model reference control law con-
sidered here, a linear quadratic control law with adjustable penalties
may be used.!® The implementation with the model reference con-
trol law, however, yields a particularly convenient solution.

Another concept represented in the four methods is the approxi-
mation, in some multi-dimensional space, of a desired input vector.
Multiple choices of the vector are possible, including the control
input, the reference input, and the commanded acceleration. The
commanded moment is also a possibility, but it is not much differ-
ent from the commanded acceleration. The reference input and the
commanded acceleration are elegant choices, but the transforma-
tion between those signals and the control signals complicate the
algorithms.

- Given the choice of an input vector, approximation may be per-
formed either through scaling or through minimization of sote cri-
terion. Scaling, e.g., methods 1-3, is easier to perform and places
emphasis on directionality. However, a solution may not always
exist. In that case, one must either return to a straight saturation
or to the minimization of some criterion. The approach based on
some optimization is possible, but is susbtantially more complex.



BODSON AND POHLCHUCK ' o

10
olf 1 i A A
DTSN S A S 1
4 I .
\ H i h f
A A A A A
; \: ‘ ! ‘;' Qi \ .
2 || .: 4 ' i v .
Y A Y
wlobf b K I
\ H B B
8 \{JI ”:: s " ‘\
: ; ,
H W H H
% o 3 320 325 330
Time (sec)
s Roll Rate Response to Pitch Rats Command
T T T '
6 . A
4 L ! : ' ?'
P e
P —— ety Il,,,..‘,..,; T :‘,l...
g g B AYTEE BMRL B
3 SETT TR TR
=2 oo e
% i LI
* A R A
6t L
! o
8} - ;‘1 .
: R
H H i HY
0 310 315 320 225 230
Time (sec)
10 Right Elevator Position for Pitch Rate Command
_ 5
g
gor
&
B -5
H
W10
5
2
-15¢.
"
305 310 315 a20 azs 330

Fig.2 Responses to alarge pitch rate command: no command limiting.

In that case, alternative criteria to the [, distance (least squares) are
possible, such as /; and I, distances.’

Prioritization may be useful, although is not considered in this
paper. It is relatively straightforward to extend the least-squares
algorithm to weight accelerations in various axes differently. Sucha
modification may be useful, for example, in the case where an axis
is unstable. For the approaches based on scaling, it is also possible
to prioritize axes by performing scaling with different coefficients in
the different axes. An implementation of this concept can be found in
Ref. 11 (inthat case, an interesting idea that is used is to give different
priorities to components of the control input associated with stability
augmentation and maneuvering, instead of different axes).

Simulation Results
Simulation Parameters ]

Simulations were carried out using a detailed model of a
twin-engine aircraft developed at NASA Dryden Flight Research
Center.'? The model is a detailed representation of the aircraft’s
nonlinear dynamics, including full envelope aerodynamics, atmo-
spheric model, detailed engine dynamics, actuator dynamics, and
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Fig. 3 Responses to a large pitch rate command: methods 1 and 2.

saturation. In the code, the position limits are from 15 to —25 deg
for the elevators, +20 deg for the ailerons, and +30 deg for the rud-
der. The rate limits are 24 deg/s for the elevators and for the ailerons.
The rudder rate saturation was disabled in the original code and was
left so. In the command limiting methods, the rudder limits were
neglected accordingly. The dynamics of the actuators besides the
saturation are those of first-order systems with poles at —20 rad/s.
In the original code, there was also a cross feed between aileron com-
mand and antisymmetric elevator command, which was eliminated.

For the control law, the constant k in the reference model was
set to 2.5 rad/s. In the adaptive algorithm, the constants were set to
A = 0.99, « = 10, and ¢ = 0.1. For the identification algorithm,
the actuator signals that were used were the commanded signals,
filtered by first-order systems. An alternative would have been to
use the actual positions, as measured by synchros on a real airplane,
but this option was not pursued.
Control Performance Without Command Limiting

The first set of simulation results is shown in Figs. 1 and 2 and was
obtained without command limiting. The reference model output
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¥u is shown by a solid line. The output y is shown as a dashed line.
The responses were obtained for a failed aircraft, with the failure
being a locked left horizontal tail surface and occurring at ¢ = 310s.
The initial parameter values that were used in the recursive algorithm
were the parameter matrices determined by a batch procedure for
the unfailed aircraft.

Responses shown correspond to single-axis commands consist-
ing in multiple step changes. Single-axis commands were chosen
to assess the capability of the algorithm to maintain decoupling de-
spite the loss of symmetry of the aircraft after failures. Multisteps
were applied to observe the tuning of the responses by the adaptive
algorithm.

The plots in Fig. 1 show the responses to a small pitch rate com-
mand of 1 deg/s. From top to bottom, the plots show the pitch rate
response, the roll rate response, and the response of the right (un-
failed) elevator. The results show that the adaptive algorithm is able
to reconfigure the control law so that trim, tracking, and decoupling
of the axes are all successfully achieved after a brief transient period.
The elevator response shows that the magnitude of the elevator de-
flection required to produce the pitching moment is doubled after
the failure, as expected.

In Fig. 2, the responses are shown for a pitch rate command of
10 deg/s, instead of 1 deg/s. In that case, the pitch rate response
exhibits some ringing, and the roll rate response shows a large cou-
pling. This coupling does not decrease with time. The actuator posi-
tions do not reach the limits, but the rate limits are reached most of
the time. The rate limits manifest themselves as the linear portions
of the elevator responses and are the source of a considerably de-
graded performance in both axes. The problem is that the actuators
controlling different axes do not saturate in a coherent way, so that
decoupling is lost. As we will see, the issue is not one of insufficient
control power, but of proper usage of the control power available.

Control Performance with Command Limiting

The responses with the command limiting are shown in Figs. 3
and 4. In Fig. 3 are the responses for methods 1 and 2, shown as
dashed lines and dot—dashed lines, respectively. In Fig. 4 are the
responses for methods 3 and 4, also shown as dashed lines and
dot—dashed lines (respectively). The pitch rate responses are much
improved with respect to the original control law. with the ringing
being eliminated. In the roll rate responses. the cross coupling is
much reduced and decreases with time. Performance is comparable
for all methods, although some transient oscillations appear with
method 4. The similar performance of the four methods is surprising
inasmuch as their principles and their relative complexities are so
different. A possible explanation is that all four methods manage
to maintain the directionality of the commands, something simple
saturation of the controls fails to do.

The adaptive algorithm with the methods of command limiting is
also able to handle multiple failures. In Fig. 5, both the left aileron
and the left stabilator are locked and method 4 is used. The responses
shown are for a roll rate command of 30 deg/s and are found to be
good, despite the significant loss of control power.

In some instances, it was found that the transient behavior of
method 4 was degraded. For example, Fig. 6 shows the responses
for a roll rate command of 50 deg/s and a locked aileron failure.
The bottom plot shows the aileron command (instead of the eleva-
tor command shown in earlier plots). As in Fig. 4, the responses
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Fig. 5 Responses to a large roll rate command with locked stabilator
and aileron: method 4.
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for methods 3 and 4 are shown as dashed lines and dot-dashed
lines, respectively. Large pitch and roll rate transients are observed
for method 4. These transients are not present in the other three
methods and are not observed for any of the four methods for a
smaller reference input of 30 deg/s. The large transients (as well as
the ringing observed in Fig. 4) are due to the uncertainty in the air-
craft parameters after the failure because steady-state performance
is comparable for all methods.

It was found that the command-limiting methods were used about
20% of the time in the runs shown in Figs. 3 and 4. For method 2,
the no-p case was encountered 2% of the time, i.., 10% of the time
the command-limiting routine was called. For method 3, the no-p
case was encountered about 0.4% of the time.

Effect of Actuator Dynamics

As pointed out by Bolling,"? actuator dynamics may significantly
reduce the rate of variation achieved under digital control. The ef-
fect is particularly important when the sampling rate is close to the
time constants of the actuators. In the simulations reported in this
paper, such effects were not observed, although the actuator model'?

includes first-order dynamics in addition to position and rate limits.
An important consideration is that the control law discussed here
does not rely on actuator positions to adjust the control increments
(as was assumed in Bolling’s thesis!?), but rather uses previous actu-
ator commands. Because the control law is not aware of the reduced
response due to-actuator dynamics, actuators are effectively over-
driven. This result is achieved similarly to a suggestion made by
Bolling for this problem, but without any adjustment required in
the control law. Another reason why the simulations shown in this
paper do not exhibit the effects of actuator dynamics discussed by
Bolling is that the model'? relies on a simple Euler integration rule,
with the integration step equal to the sampling rate of the control
law. Therefore, fine characteristics of the intersample behavior are
not represented in the simulations.

Conclusions

Four methods of command limiting were studied, spanning from
a simple scaling of the control inputs t0 a least-squares approxima-
tion of commanded accelerations. The emphasis was on problems
occurring in the context of reconfigurable flight control. Simula-
tions showed that, without command limiting, considerable degrada-
tion of performance could result from large reference inputs. These
problems could be alleviated using the command-limiting methods.
Overall, the performance was found to be comparable for all meth-
ods. This was somewhat surprising given the different concepts that
were implemented and the different complexity levels.

Sometimes, degraded transient responses were observed with
the least-squares approximation of commanded acceleration. This
degradation may be because the method uses the knowledge of the
generated moments and because there is considerable uncertainty
in those moments for a period following a failure.

An important problem, which was not addressed in this paper, is
that of allocation of control authority among a number of redundant
actuators. The least-squares approximation of the commanded ac-
celeration can be extended to that problem, without conceptual dif-
ference. Computational requirements, however, grow rapidly with
the number of actuators. Another approach is based on the scaling
of the variation of commanded acceleration, which may be viewed
as an extension of the first method, although it is conceptually more
sophisticated and computationally more complex.

Stability issues were not addressed and are a significant area of
interest, especially for unstable aircrafts. Because the methods of
command limiting presented do not affect the control signals away
from the limits, the stability properties for small motions are the
same as those of the linear control law. For large motions that in-
duce control saturation, stability guarantees are extremely difficult
to obtain. Because stability is also affected by pilot dynamics, such
issues are likely to be resolved in practice through extensive flight
simulations and testing.
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Abstract

The paper considers the direct allocation method proposed by Durham. The original method
assumed that any three columns of the controls effectiveness matrix were linearly independent.
In this paper, the condition is relaxed, so that systems with coplanar controls can be considered.
For fast on-line execution, an approach using spherical coordinates is also presented and results

of the implementation are reported. Linearized state-space models of a C-17 aircraft and of a

tailless aircraft are used in the evaluation.
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1. Introduction

In order to increase the reliability of aircrafts, configurations with a large number of actuators
and control surfaces are advantageous. Reconfigurable control laws may be used to exploit all
the available control power despite failures and da.mages.l'2 Control allocation is the problem of
distributing the control requirements among multiple actuators in order to satisfy the desired
objectives while accounting for the limited range of the actuators. Although solutions exist for
the control allocation problem, an issue of current interest is that of the feasibility of their
implementation on existing computers for aircrafts with a large number of actuators.”

The direct allocation approach“‘s'6 is based on the concept of the attainable moment set
(AMS), which is the set of all the moment vectors that are achievable within the control
constraints. The method of direct allocation allows one to achieve 100% of the AMS, whereas
other approaches such as daisy chaining, pseudo-inverse and generalized inverse solutions have
been shown to achieve a smaller volume.

In the direct allocation method, the moment vectors are assumed to be related to the controls
through the linear transformation m = CBu, where m is the resultant moment, u is the set of
controls, and CB is referred to as the controls effectiveness matrix. The original method for
three-moments developed by Durham was restricted to systems in which any three columns of
CB are linearly independent. For this case, the boundary of the AMS consists of parallelograms
defined by pairs of controls varying between their limits. As it turns out, the control needed to
produce any moment on the boundary of the AMS is unique. In the direct allocation method,
moments lying inside the boundary of the AMS are obtained by scaling the controls required to
produce a moment of maximum magnitude in the same direction. In a similar manner, moments
lying outside the boundary are scaled down to the achievable values. Therefore, controls are
always uniquely defined.

If the restriction on CB is not satisfied, then the boundary of the AMS is defined by polygons
rather than parallelograms, and each facet is bounded by 2p sides, where p is the number of
controls defining the polygonal facet. With more than two variables describing the facet, the
solution is not always unique, even on the boundary of the AMS. Because this situation occurs
when the effects of three or more controls are linearly dependent in a three-dimensional space,

the terminology ‘coplanar controls’ is introduced to explicitly refer to this case. Systems with



coplanar controls are loosely called ‘coplanar systems.’ The geometry of the AMS boundary is
further described in the paper, and a possible choice for the selection of the control is proposed.
given the non-uniqueness properties.

Next, we consider that most of the computational burden in using the direct allocation
method lies in finding the facet in which the desired moment resides. Generally, computations
may be split into off-line and on-line computations. Off-line computations are defined to be
those that may be performed at the design stage or, in the case of a reconfigurable control law, at
a slower rate than the normal sampling rate. On-line computations are those that are required for
the determination of the control input at every sampling instant. A significant portion of the
computations may be performed off-line in the direct allocation method, and consist in the
determination of the set of attainable moments. On-line computations include the search for the
facet in the attainable moment set that is aligned with the desired moment, and the determination
of the control input using appropriate scaling.

To reduce the on-line computations, a representation of the AMS in 2-dimensional space,
using spherical coordinates, is shown to be beneficial. The new method converts the AMS
representation into a two-dimensional system, where special techniques can be used to accelerate
the search. Two options are suggested for the implementation. The first method computes facet
boundaries that are used on-line to rapidly eliminate a large number of facets from the search.
The second method creates a two-dimensional array relating the spherical coordinates of the
desired moment to a corresponding facet identifier. The appropriate facet is found on-line by
table look-up, requiring no iterations and virtually no computations. The spherical methods are
also developed for coplanar systems. Rather than using polygonal facets for the rapid search, a
representation using multiple coplanar sub-facets is considered. Examples used to illustrate the

concepts proposed include a C-17 aircraft model with 16 actuators and an advanced tailless

fighter model with 11 actuators.

2. Problem Statement

Consider the linearized aircraft model



x=Ax+Bu
y=Cx

o))

where x € R’, u € R", y € R*. The states of the aircraft are given by x, and include the angle of
attack, the pitch rate, the angle of sideslip, the roll rate, and the yaw rate. The output v contains

the pitch rate, the roll rate, and the yaw rate. The control input, u, is constrained to limits
Uimin < Ui S Uimax fori=1...n

The matrix B specifies the forces and moments generated by the actuators. These forces and
moments are limited by the allowable range of control inputs. Since we are interested in

controlling the output y, we consider the derivative of y, which is given by

y =CAx + CBu ()

Model reference control laws® and dynamic inversion control laws® allow one to specify the
rajectories of the output of the system by selecting the value of the term CBu due to the control

input. The control allocation problem is then stated as follows:

Objective: Given a desired vector my, find the vector u such that CBu is closest to my In

magnitude, with « satisfying the constraints and CBu proportional to my.

In the original formulation of Durham, the vector m, was a desired moment. Here, the vector

represents three desired rotational accelerations. We will nevertheless continue to refer to the set

of achievable CBu's as the AMS.

3. Set of Attainable Moments and Direct Allocation

Initially, we make the following assumption:

Assumption (non-coplanar controls): Every 3x3 sub-matrix of CB is full rank.



Under this assumption, the following properties are obtained.

3.1. Properties of the AMS
The AMS is a convex polyhedron, whose boundary is the image of the facets of the control

space. A facet of the control space is defined as the set obtained by taking all but two controls at
their limits, and varying the two ‘free’ controls within the limits. A 2D facet in control space is
rectangular. The projection of such a facet to moment space is a linear transformation resulting
in a 2D parallelogram in 3D space. When any three columns of the CB matrix are linearly
independent, every facet on the boundary of the AMS originates from a unique facet on the
boundary of the control space. There are 2"t/ [2!(n-2)!] facets in the control space. However,
most of these facets map to the interior of the AMS, and the boundary of the AMS is comprised
of only n(n-1) facets®. The four corners of each facet of the AMS are called verrices, and the

four sides are called edges. There are n(n-1)+2 vertices in the AMS.

3.2. Computation of the AMS

The boundary of the AMS is made of facets corresponding to all the possible pairs of input

variables. For each pair, there is a multitude of facets in the original control space, but only two
of them map to the boundary of the AMS. They may be found by looking for the combination of
the other controls that maximizes the distance between the two facets. Hereafter, we refer to one

of the facets as a ‘'max’ facet and the other as a ‘min’ facet. The collection of all these pairs of

facets then constitutes the boundary of the AMS.

To further explain the procedure, let CB be subdivided as
CB = [cb; cb; ... cby],

where c¢b; is a column vector, and m; = cb; ; is the moment vector corresponding to the single
control u;. For a pair of controls, (u;, u;). i € {l...n}, j € {i+1...n}, let the normal to the plane of

the facet, 1, , be defined by taking the cross-product of the two vectors defining the facet



m; =cb, xXcb, (3)

Then, the two farthest facets are determined through the two vectors

n
Mmax = 2 e max (4)
k=lk=i,j

bty max I (cby )Tnf,- >0

where Wy ma = _
" o O (Cbk)TTlij<0

and‘

Myin = 3. Himin ©)
k=l.k=i.j
oty max if (ch) M <0

where Wi min = :
e Cbk“k.min if (cby )Tnif >0

Note that the case where the vector product (cb, -)Tn,-j is identically zero is impossible by virtue

of the assumption of linear independence of .any three columns of the CB matrix. However, this
case is possible with coplanar systems and is discussed in detail in section 3.7. In coding this
procedure, it is convenient to store an array of flags indicating the control values (max, min, or
free) associated to each facet. A facet may also be assigned a number to index the array.

The vertices of the two facets are determined by using the maximum and minimum values of

the other two free controls. For instance, the vertices for the max facet are

+cb.u,

i.min J** j.min

m,=m,_, +cbu, .. +cbu,

i%i.min J°° j.omax

m,=m,, +cbu

(6)
m,=m,, +cbu, . +chbu

i.max J7 j.min

m,=m, +chu, .. +cbu; .

Figure 1 shows the results of this procedure for a C-17 aircraft model. A 3-dimensional view

of the boundary is shown. The facets are shaded according to height in the yaw acceleration



axis. The C-17 model includes sixteen separately controlled surfaces: 4 elevators, 2 ailerons, 2

rudders, and 8 spoilers. The set is delimited by 240 facets.

3.3. Computation of the Control Input

The control input is obtained by scaling the desired moment so that the scaled vector reaches the
boundary of the AMS. On the boundary, there is a unique relationship between the moment and
the value of the input needed to achieve it. If the desired moment is larger than the one
attainable in the given direction, the moment vector is scaled to the achievable value. If the
desired moment is smaller, the control input associated with the maximum attainable moment is
scaled to obtain the desired moment.

The algorithm proceeds as follows. For a given facet, a basis spanning the moment space is
formed by using the vector from the origin to one vertex of the facet and the vectors from this
vertex to the two adjacent vertices. Let myqq be the vector to one of the vertices and m; and m; be

the vectors to the other two vertices. -

5.
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Figure 1. Set of attainable moments for a C-17 model.




Using m, as the desired moment, we have

mhase = ml
m, =m,—m =cb, (ui.max ~U; min )
(7
m;=m—m = cb; (“j.max ~U; min )
psmy, = pm; +p,m;+m,,,
The free parameters p,, P2, p3 are found by solving the 3x3 set of linear equations
P
-1
P, |=|—m; —m, md] My, 3
Ps

Figure 2 shows graphically the moment vector equation. The value p3myis the point at which the
vector my intersects the facet. The values of (P, P2, p3) determine whether m, intersects the
facet. If p; > 0, and p, and p, are both between 0 and 1, then a vector in the direction of the

desired moment intersects the facet defined by mpaye, m;, and m;.

my

Figure 2. A desired moment intersecting a facet,
with basis vectors shown in relation to the facet.

The control vector at the boundary is

Uboundary = Ubase + P1U; + Pl . 9




where upue, Ui, and u; are the sets of controls which determine mpq., m;, and m; respectively.
Uboundary 1S the control associated to the maximum moment in the direction of the desired moment
and within the control constraints. If ps; < 1, the desired moment exceeds the maximum available

moment and Upoundary 1S taken to be the control. If p3 > 1, the control is scaled to match the

moment requirement, With # = Upoundary/ P3-

3.4. Sequential Search for Direct Allocation

The computation of the control input involves the solution of a linear system of three equations
in three unknowns, and the linear combination of three input vectors. If the correct facet is used,
the computations are minor, and the resulting control input satisfies the limits. If the incorrect
facet is used, the values of (p;, P2, p3) exceed their limits, and the control input will not satisfy
the constraints. The computation may be used as a test of whether the facet is the correct one. If
all the facets are tested sequentially in this manner, the procedure may be used for control
allocation. We will refer to this approach as the sequential search procedure.

The computations for this procedure may be separated into off-line and on-line computations.
The off-line code creates a table containing the four vertices associated to each facet. The on-
line code consists of retrieving the vertex data, computing the control, and checking its
feasibility. Once the correct facet is encountered, computations stop. The search will be time-
consuming if the number of facets is large. The sequential search was nevertheless implemented
to provide a baseline for the evaluation of the benefits of the methods proposed. More intelligent
search techniques have been proposed5 1% but these were not implemented for this paper.

Instead, the use of spherical coordinates is investigated to accelerate the search.

3.5. Properties of the AMS for Svstems with Coplanar Controls

For systems with coplanar controls, a p-dimensional volume ( p 2 2) in control space maps into a
2D facet in moment space and has 2p sides. The facet becomes a polygon defined by p controls.
Figure 3 shows the AMS for an advanced tailless fighter model''. According to reference (11),
the output vector y is composed of modified rotational rates. Specifically, the components of y
are the pitch rate, the stability axis roll rate, and a blend of sideslip and stability axis yaw rate.

The advanced tailless fighter model includes eleven separately controlled surfaces consisting of
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Figure 3: Set of attainable moments for an advanced
tailless fighter model.

elevons, pitch flaps, thrust vectoring, outboard leading edge flaps, spoiler slot deflectors and all-
moving tips. In this model, thrust pitch vectoring and the pitch flaps produce linearly dependent

moments yielding coplanar controls with any third control variable. It was found that up to four

control variables were coplanar (2 Sps 4). Some polygonal facets are indeed clearly visible on

the figure. The boundary of the AMS is delimited by 78 such facets.

3.6. Alternative Description for Coplanar Controls using Sub-Facets

Polygonal facets can also be described by a set of sub-facets that are the projections of the 2D

facets of the control space. Each 2D facet is determined by two controls as in the non-coplanar
case. For every pair of the p controls, there are 2”* identical sub-facets offset from each other

in the same plane. Since there are p(p—1)/2 pairs of controls, the total number of sub-facets

covering a polygonal facet is given by

n,=p(p-12"" (10)

Figure 4 is a series of figures that details the relationship between a polygonal facet and its sub-
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Figure 4. View of the relationship between a
parent polygonal facet and its sub-facets.

facets. The top figure shows a polygonal facet. The middle figure shows how the six sub-facets
cover the polygonal facet. The bottom figure shows the three sets of sub-facets in an exploded
view. The representation of the AMS by sub-facets has been found to be more practical for the

computation of the control input in the extension of the direct allocation method proposed here.

3.7. _Computation of the AMS

The algorithm is similar to the one described in section 3.2. For every pair of controls, (u;,

u), i € {l..n}, j e {i+1...n}, each column of CB, excluding columns i and j, is evaluated.

Coplanar controls can be determined by the product (chby )Tnij where k # ij. If this product is

zero, then the ¥ control is coplanar with the facet created by the control pair (u;, #;). The non-

11



coplanar controls (that correspond to the columns of CB that are linearly independent of columns
i and j) are then selected so as to maximize the distance of the facet from the origin. As before.
for each facet, there is an identical facet that lies on the opposite side of the AMS boundary and

can be found using the opposite values for each of the n-p non-coplanar controls. Defining the

set of indices

I, j, and indices of all controls
" | coplanar with «; and u; ’

the maximum displacement vector is

Mmax = z L max | (1 1)
o

where W, .. is defined in (4). The opposite facet is determined by the minimum displacement
vector

Mamin = 2 u’k.min (12)
ek

where W, ., is defined in (5).
While the non-coplanar n-p controls determine the distance of a polygonal facet from the

origin, the remaining p controls determine the shape of the polygonal facet. Each polygonal
-1 5 .
facet is made up of t=£—£e2——2 sets of r=2""" sub-facets. Each sub-facet lies in the same

plane, but has a different offset that shifts it with respect to the other sub-facets. The offset is

determined by the sum of the r combinations of max and min control values of the coplanar

controls. For every unordered pair of controls {(ua,u,, )I acK,beK,a# b}, the offset of each
sub-facet is computed using the controls {ur lceK,ce {a,b}} in different combinations of their

upper and lower limits, resulting in



offser, =cbu, where ge{l...r}. (13)

Since c is a vector of p-2 indices, cb. in (13) is a matrix with p-2 columns.

Finally, sub-facets are defined by vertices obtained by summing the displacement vector, the
offset, and the four combinations of maximum and minimum values of the two free controls. u,

and u,. For instance, the four vertices for the qth max sub-facet are

m,=m,, +cb u

a” g.min

+cbu, .+ oﬁ‘setq

m,, =mg, +cbi

a”‘u.min

+cbyu, . +0ffser, (14
) 14)
m, =m., +cb u +cbyu,, i +Offser,

a  d.max

aa,max

m,, =M., +Ccbi, . +Cbu, . +0ffser,

3.8. Computation of the Control Input

With all but two of the controls at their limits for a given sub-facet, the control that will achieve a
moment vector intersecting the sub-facet can be defined as before. However, since overlapping
sub-facets may exist at a particular boundary point, there is not, in general, a unique relationship
between the moment and the value of the input needed to achieve it. While the solution
corresponding to any sub-facet could be taken as a solution to the direct allocation problem, we
propose to take instead the average of the inputs resulting from all overlapping sub-facets.
Taking the average is a simple solution that gives the desired moment, and usually reduces the

number of saturated controls, as well as guarantees the continuity of the solution.

3.9. Sequential Search for Control Allocation

The sequential search procedure described in section 3.4 may be employed for the search for the
right sub-facet. Although all sub-facets containing the desired moment must be found, once a
correct sub-facet is encountered, one only needs to check the other sub-facets lying in the same
plane (i.e. those with the same parent polygonal facet) to complete the search. The sequential

search procedure is useful as a baseline for evaluation.



4. Rapid Search Using Spherical Coordinates: Non-Coplanar Case

4.1. Representation of the AMS in Spherical Coordinates

Because the determination of the applicable facet does not depend on the magnitude of the
desired moment, the search may be performed in a 2-dimensional space instead of the original 3-

dimensional space. Each vertex of the moment space, determined by (X, y, ) coordinates, can

be expressed in spherical coordinates (6, s@, p), with

6 =tan’'(y, x) (15)

$Q = sin(Q) = (16)

2
p

p=yx'+y’ +2° (17)

0 represents the azimuth angle (the horizontal angle in the X, y plane), ¢ represents the elevation
angle (the vertical angle from the x, y plane), and p represents the distance from the origin. This
third spherical coordinate is irrelevant for tﬁe search of the facet. For the azimuth, note that a
two-argument inverse tangent function is used. The value sin(¢) (henceforth abbreviated s) is
also used instead of ¢ to simplify on-line computations.

Figure 5 shows the result of transforming the boundary of the C-17 AMS to spherical
coordinates, with 8 shown on the x-axis in the range of +n. The sine of the elevation angle is
shown on the y-axis. The figure shows that the lines that form the edges of the facets become
curves, because of the nonlinear change of coordinates. In fact, these curves are the well-known
great circles used in navigation. They are the projection on the unit sphere of 3D line segments,
or the intersection of the unit sphere with a plane including the origin and the two vertices. The
idea of using the spherical coordinates is that the desired moment is represented in the 2D space
as a point, and that the control allocation problem becomes the simpler problem of determining
to which 2D facet the point belongs. |

Some terminology is introduced to help convey the algorithms. An edge joins two adjacent

vertices of a facet. A crossing is defined as an edge between two vertices, with azimuth angles 8,

14
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Figure 5. Spherical mapping of C-17 AMS facets.

and 0, which crosses the £1 boundary. It is found by testing
50 = Brnax - Broin, (18)

with 8ax = max(0,, 02), Omin = min(8,,08,). If 86 > m, one may conclude that the edge crosses the
boundary. A split facet is one in which the facet is bisected by the line 6 = 7.

The great circle for each pair of vertices looks like a distorted sinusoid in the spherical
coordinate space. The curve reaches maximum and minimum values of the elevation angle ¢ that
have equal magnitude and opposite sign. These points occur 180° apart in azimuth angle. For

the mapping of two vertices in 3D to two vertices in spherical coordinate space
{(x,9,2,).(x2,¥2.2, )}é{(@,.sgol ).(6,.50, )} it turns out that one of the extrema of the great
circle occurs at (Bpk , SQpk) given by

epk = tan'](X/ZZ-X,zZ/, yZZI'YIZZ) , (19

SO,
N 20)
" o + =50, )cos(8,, -,)’

To obtain the correct values, 8, needs to be adjusted by £ using the following rule:

15



if cos(B, —8,)<0

_ (2
then 8, =6, —sign (Bpk )n

The other extremum of the great circle is obtained by symmetry.
With the knowledge of the peaks of the great circle, the equations defining the great circle,

that is, the edge of the facet under consideration, is given by

cos (0, )=1-50},
o =50, cos (ka -0, ) (22)
SOy = =

\/cos((ppk y+a.’

where (8, s@y) is a point on the great circle.

4.2. Rapid Search using Facet Boxes

In the first option, ranges are computed for the coordinates of the facets, and they define boxes in
which the facets are located. The boxes are used to quickly assess whether the desired moment is
likely to lie within a given facet. The overall approach is similar to the exhaustive search, but
simple inequality tests are used to drop facets from the list. For those facets that are left, the
usual 3D test is performed. If the test is successful, the control input is quickly obtained.

Otherwise, the search continues. The idea is that the 3D test is then required for very few facets.

4.2.1. Off-line Computations
Off-line computations consist in the determination of the AMS, and of the boxes that delimit the

facets in spherical coordinates. For illustration, a facet box is outlined with a dashed line in
figure 6. It shows that the box is determined not only by the coordinates of the vertices, but also
by maxima reached within the edges of a facet. The peaks of the great circles are therefore
determined using (19), (20), and (21), and their values are used in the computations of the box if
the peaks lie between the vertices.

A difficulty with the implementation of the method is that facets may span the boundaries of

the 2D space. In particular, two facets include the north pole and the south pole. The north and
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Figure 6. Spherical mapping of a single facet outlined by a facet box.

south poles are the points with ¢ = 90° and ¢ = -90°, respectively. Facets may also span the
azimuth boundaries. Such facets could be split into two facets to perform box tests. Instead.
however, facet types are defined, and those facets that span the azimuth boundary are redefined

on the (0, 2m) range so that they become contiguous. The procedure is then implemented as
follows.

Step 1: Compute AMS vertex coordinates and facets. The AMS is computed using the direct

method as described above.
Step 2: Compute spherical coordinates of all vertices.

Step 3: Determine the facet type. Five types of facets are considered and are designated as types

0, 1, 2, 3, and 4. The azimuth range is extended so that each facet is completely contained in at
least one of the two ranges of 8: -t < 6 < wand 0 < 6 < 2n. A facet is assigned a label of type 0
(those facets in the first set) or type 2 (those facets in the second set, i.e. split facets). Further,
three special cases are assigned: (a) facets that enclose a pole (type 1), (b) facets that border a
pole and lie within -t < 6 < 7 (type 3), and (c) facets that border a pole and lie within the range

0 < 0 < 2m (type 4). Facet type can be determined by testing the 86 of each facet edge. The



value of 86 is categorized in four possible ranges:
Case I: 80 <m, Case2: 88 > m, Case 3: 30 =x, Case 4: 36 = 0.

A simple algorithm can be applied to determine the facet type based on the type and number of
crossings, with

facet type = ¢ + 3d (23)

where ¢ & {0,1,2}is the number of crossings andd & {0,1}is the number of occurrences of case 3.

Step 4: Determine box boundaries of spherical facets.

(a) Compute the maximum and minimum spherical coordinates of the edges berween vertices of
each facer. If the facet is type 2 or type 4 (i.e., in the 0 < 6 < 27 range), negative values of 8, 85,
and 6, of each edge are incremented by 21 before calculating s@px.

(b) Store the extremal values of © and sin(Q) for each facet to define the facer box. For each
facet, determine Omin, Omax> SOmin, aNd SQmax. Store these values in a facet box table. If the facet
includes a north (south) pole, s@max (SOmin) is forced to its maximum (minimum) of I (-1).
Distinguishing a north pole from a south pole can be done by calculating the great circle formed
by any two of the facet vertices that form an edgé and testing the location of a third facet vertex
(03, s@3) relative to this great circle. If sQqc is computed from (22) with 6y = 83, and if s@3 > sQq,

the facet is a north pole. Otherwise, it is a south pole.

4.2.2. On-line Computations

Step 1: Convert the desired moment into spherical coordinates.

Step 2: For each facet, check the feasibility of the desired moment. Compare the coordinate of
the desired moment to the facet box. If the facet box is type 2 or type 4, add 2x to the azimuth of
the point. If the desired moment lies within the box boundaries, compute the 3x3 inverse of

section 3.3. The rest of the controls are given by the control flags associated with the facet

number.

Step 3: Compute the control input. Once the correct facet is found and the 3D test is performed,

one only needs to scale the control as necessary to satisfy the constraints.
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4.3. Rapid Search using Table Look-up

The second option consists in creating a look-up table f(0, sp) which gives the number of the
facet associated with a given pair of spherical coordinates. If the azimuth and elevation angles
are quantized with 1000 points each, this option requires an array with 1,000,000 values, a size
which is large but within the reach of éxisting computers. The creation of the table is essentially
the transcription of figure 5 into an array, and the marking of the elements of the array with the
associated facet number.

The on-line computations could not be simpler with this approach: the facet towards which
the desired moment points is found instantly by table look-up, and the appropriate control is

determined with minor computations. Note that control allocation is guaranteed to be performed

within a known and short period of time.

4.3.1. Off-line Comgutatibns: Con_struction of the Facet Table

The steps to this method are as follows.
Step 1: Compute AMS vertex coordinates and facets. The AMS is computed using the direct
method as before. From this computation, one obtains coordinate information as well as

knowledge of which vertices connect along an edge of the facet, and the set of controls that form

each facet.

Step 2: Compute spherical coordinates of the vertices. For a vertex at (X, y, z), the spherical

coordinates (8, s@, p) are obtained using egs. (15, 16, and 17).

Step 3: Compute and quantize the facet edges. Quantizing the edges is done by converting the
end points to a range of‘ index values in 8, computing corresponding values of s@, and then
converting these values to an appropriate index. Continuous edges in the range -m<f<m are
straightforward. Edges which cross the 6 = +1 boundary have s¢ indices that are not contiguous

and must be managed properly. The indices of each edge of the facet are stored in a common

array.

Step 4: Modify pole facets. Facets containing a pole must be treated as special cases. A facet
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with one crossing, that is, one edge with 38 = rt (corresponding to an edge that passes through a
pole), contains a pole. Since the line s is actually a single point in 3D, the edge s¢ = =1 (1 for

north pole, -1 for south pole) for each 6 index must be added to the common array of step 3.

Step 5: Create facet table. The facet table is a two-dimensional array of the facet numbers or
identifiers. The indices represent quantized values of 6 and s¢p. When the common array is
complete, the facet table is updated in the storage locations to which the facet indices just

calculated correspond, including indices inside the boundary of the facet.

4.3.2. Oh—line Computations

Step 1; Convert the desired moment into spherical coordinates and then to facet table indices.

Step 2: Obrain the facet number from the look-up table.

Step 3: Compute the control input. Compute the 3x3 inverse of section 3.3 to arrive at the values
for the free controls. The rest of the controls are given by the control flags associated with the

facet number. Scale the control as necessary to satisfy the constraints.

4.4. C-17 Example

Each algorithm was tested with 1000 randomly selected desired moments for the C-17 example.
The AMS has 240 facets and 242 vertices in moment space. The sequential search method was
used to establish a baseline to evaluate the other search methods. The spherical facet table
technique was simulated using quantizations of 100 and 1000 for each axis.

Figures 7 and 8 display comparisons of the number of floating point operations (obtained by
using the flops command in MATLAB?®) of the three algorithms. These histograms are intended
only to provide a rough comparison of the algorithms described in this paper and should be used
with caution, as the results are dependent on the specific implementation as well as on the

language and hardware used. Note in particular that MATLAB® counts as floating pointing
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operations some operations that would normally be counted as integer operations. The code for
each algorithm was written in MATLAB® version 5.3.

The histogram in figure 8 shows a range and an average value for the on-line code of the
sequential search and facet box methods. The range denotes the minimum to maximum possible
values for the method, whereas the average was computed for the 1000 randomly sampled
moments. One finds that the facet table approach considerably reduces the number of required
computations to be performed on-line, and eliminates the variability in the number of those
computations. Memory requirements are significant, however. In an adaptive control application,
the off-line computations may also constitute an important burden to be considered. The facet
box approach is a simple and useful intermediate option.

Further analysis indicates some interesting characteristics of the facet box algorithm. Figure
9 gives a histogram of the number of box tests performed before the correct facet is found. The
theoretical maximum is 240 in this example, but one finds that rarely more than 150 tests are
required. The average number of tests was computed to be 49.7. .

With the box test, the number of 3x3 inverses to be performed is considerably less than the
number of facets tested. Figure 10 shows that in nearly 50% of the cases, only one facet was
tested. In 95% of the cases, a maximum of three inverses was required, and in none of the cases
were more than five inverses required. The average number of 3D tests was computed to be 2.0,
to be compared with 49.7 required without the box test. While sequential search by itself is
impractical, box tests in spherical coordinates make this approach much more feasible. The

number of computations required, however, is not fixed.
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5. _Rapid Search Using Spherical Coordinates: Coplanar Case
5.1. _Representation of the AMS in Spherical Coordinates: Coplanar Case

Figure 11 shows the result of transforming the boundary of the advanced tailless fighter AMS to
spherical coordinates. The transformed polygonal facets are visible. Although not shown,
parallelogram sub-facets are used to cover the area of every polygonal facet. Because the
polygonal facets can be completely specified by sub-facets, the same options as discussed in

sections 4.2 and 4.3 can be used. However, modifications to the specific options are made here
to extend its use to solve the problem of overlapping sub-facets.
06
04}

02b

Elevation

Azimuth

Figure 11. Spherical mapping of overlapping
facets outlined by facet boxes.

5.2. Rapid Search using Facet Boxes

5.2.1. Off-line Computations
As in the original method, ranges are computed for the coordinates of the sub-facets. Sub-facets

are treated no different from non-coplanar facets. However, a methodology for tracking
overlapping sub-facets improves the on-line search. An array identifies a parent polygonal facet
for each sub-facet. Once a sub-facet is found, only the other sub-facets associated with the same

parent are tested. For our example of the tailless fighter, which has 78 polygonal facets and 210
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sub-facets, the array has 210 rows and 78 identifiers. Figure 12 shows an illustration of

overlapping sub-facets outlined with facet boxes.
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Figure 12: Spherical mapping of overlapping
sub-facets outlined by facet boxes.

5.2.2. On-line Computations

Step 1: Convert the desired moment into spherical coordinates.

Step 2: For each sub-facet, check the feasibility of the desired moment. Compare the coordinate

of the desired moment to the facet box. If the desired moment lies within the box boundaries,
compute the control for this sub-facet. If the conditions on (pi, p2, p3) are satisfied, check all

other sub-facets associated with the same parent facet. If not, go to the next sub-facet.

Step 3: Compute the control input. Once the correct sub-facets are found and the 3D tests are

performed, the results are averaged and scaled if the desired moment exceeds the achievable

value.
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5.3. _Rapid Search using Table Look-up

The creation of a spherical coordinate table for a system with coplanar controls can be done by
including a third dimension. The added dimension is a vector of n,, values corresponding to the
sub-facets that overlap at that location. Low quantization resolution may increase the apparent

number of overlapping sub-facets.

5.3.1. Off-line Computations: Construction of the Facet Table

The facet table is a two-dimensional array of sub-facet numbers or identifiers. Sub-facet indices
are recorded along a third dimension, if overlapping occurs. Again, the details of this method are

identical to those explained in section 4.3 with the modification of the vectorized facet identifiers

in the table.

5.3.2. On-line Coinputations

Step 1: Convert the desired moment into spherical coordinates and then to indices of the facet

table.
Step 2: Obtain the array of facet numbers from the look-up 1able.

Step 3: Compute the control input. Compute the 3x3 inverse of section 3.3 for each sub-facet in

the array to arrive at the values for the free controls. Average the resulting controls of each sub-

facet. Scale the averaged control as necessary.

Again, the on-line computations are quite simple with the facet table approach: the sub-facets
towards which the desired moment points are found instantly by table look-up, and the
appropriate control is determined with minor computations. Note that on-line computations
could be even further reduced by converting the facet table into a control table. This would be
done by computing the control for each facet table location in the off-line code. The on-line
code then becomes exclusively a look-up table to obtain the control. This method is ideal for

applications where low resolution is acceptable or where simple and reliable on-line code is of

premium importance.
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5.4. Tailless Fighter Example

Each algorithm was tested with 1000 randomly selected desired moments and with the tailless
fighter model. The AMS has 210 sub-facets in moment space. The sequential search method
was used to establish a baseline to evaluate the other search methods. The spherical facet table
technique was implemented using quantizations of 100 and 1000 for each axis. Figure 13
displays a comparison of floating point operations for the off-line computations. The number of
computations for the 1000x1000 facet table was of the order of 10’ flops and was not plotted
with the others in the histograms.

Figure 14 shows the on- line computations. The histogram entries for the sequential search
and facet box methods have a range and an average value. The range denotes the minimum to
maximum possible values for the method, whereas the average was computed for the 1000
randomly sampled moments. As in the case for systems with non-coplanar controls, both
spherical approaches considerably reduce the number of computations to be performed on-line,
and significantly reduces the variability in the number of those computations. The facet box
approach is nearly equivalent to the facet table method in terms of on-line calculations and
significantly cheaper in terms of off-line computations.

The variation in on-line computations for the facet table method of different quantizations is
due to variations in the number of apparent overlapping sub-facets. Although two sub-facets
might not overlap, if the quantization is low enough, they effectively may. This results in more
sub-facets to be checked and averaged. Therefore a higher quantization will typically yield
lower on-line computations.

Although the theoretical maximum number of box tests is 210 the average number is only 52.
Figure 15 gives a histogram of the number of box tests performed before the correct facet is
found. Figure 16 shows a histogram of the number of 3x3 inverses computed before a final
control value is determined. In 92% of the cases, a maximum of eight inverses was required, and
in none of the cases were more than fifteen inverses required. The average number of 3D tests
was computed to be 5.6, to be compared with 52 required without the box test. The number of

computations required, however, is not fixed due to variability in the number of overlapping

facets.
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6. _Conclusions

Direct allocation provides a solution to the control allocation problem that not only retains the -
direction of the desired moment, but also yields a solution that takes advantage of the maximum
attainable moment set. Direct allocation was previously only applicable to systems whose
controls effectiveness matrix was such that every three columns were linearly independent. A
system that is not limited in this way has been called a system with coplanar controls, or stimply a
coplanar system. The example of a tailless fighter aircraft model was shown to fall in this
category.

The geometry describing the attainable moment set for a coplanar system was explained and
an extension to the direct allocation method was given in this paper. The average of the multiple
solutions was computed in the procedure, and the concept of overlapping sub-facets was found
useful for that purpose.

The representation of the AMS in spherical coordinates makes it possible to rapidly perform
the on-line computations required by the direct allocation method. No prior information is
required about the approximate location of the correct facet. Two options were discussed which
have their respective advantages. The first option (facet box method) did not require large
memory storage. but had a larger and variable number of on-line comput.ations; The number of
computations for a given control cycle will not exceed n(n-1) box check comparisons (trivial)
and a few 3x3 inverses. The number of 3x3 inverses is uncertain but was found to not exceed 5
in our tests involving an aircraft model with 16 actuators.

The second option (facet table look-up method) required virtually no on-line computations
and provided a guaranteed solution in a fixed time. The drawback was a potentially large
memory requirement and longer off-line execution time. Overall, both options provide a
considerable improvement over a sequential search of the facets based on the 3D test.

Slight modifications to the spherical coordinate methods were shown to provide direct
allocation solutions to coplanar systems. The properties of those methods were similar to those
for non-coplanar systems. Overlapping sub-facets were identified by adding a third dimension to
the table that stores the identifier of each sub-facet. ”

The facet table approach can be viewed as a non-linear extension of standard ganging

techniques. Table look-up replaces conventional linear transformations. The advantage over
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ganging and other simple control allocation techniques is that it guarantees the use of the
maximum control authority available, while requiring very few computations. Compared to
other rapid search techniques for direct allocation, its advantage is a high degree of predictability
and reliability. However, the method requires a significant amount of memory and is not well

suited to reconfigurable control, which would require continuous update of the look-up table in

real-time.
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